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Abstract—After analyzing the curvature expression, the in-
flection points were given by the known planar cubic Bézier
control polygon information. Based on that, we proposed a brief
algorithm that can obtain the shape feature points of cubic Bézier
and B-spline curves. Experimental results show that the method
is rapid, accurate, and robust.

I. INTRODUCTION

In practice application, it is necessary to accurately describe
the shape characteristic of the parametric curve. In general, It
mostly depends on the analysis of the Bernstein basis function
and control polygon to describe the shape characteristic of
Bézier curve [1]. When peoples need to divide some seg-
mented convex curve from the shape characteristic points [2],
the method of extracting the characteristic points based on
curvature expression have to be considered.

As forthgoers, M.Sakai [3], FalaiChen[4], Qinming Yang[5]
proposed some better algorithms to get inflection points of
parametric curve, but they don’t discuss the constraints from
control polygon on the inflection point, which leads to the im-
plementation of algorithm of inflection point is more complex.

In order to quickly and accurately obtain the shape char-
acteristic points of planar cubic Bézier curve and cubic B-
spline curve, according to the nu-uniform inflection points
concept in some branch of mathematics [3][4][5], we classified
inflection points into singular points and non-singular inflec-
tion points [6]. Then, some specific formula for calculating
inflection points were given and an effective algorithm was
proposed.

II. SHAPE FEATURE OF CUBIC BÉZIER

Curvature is an important parameter of planar curve. In this
section, in order to quickly and accurately obtain the shape
characteristic points, formula for calculating inflection points
that can be classified into singular points and non-singular
inflection points would be derived by analyzing curvature
expression and control polygon of cubic Bézier curve [7].

A. Curvature of Cubic Bézier Curve

The cubic Bézier curve is defined as follow:

C(t) =
3∑

i=0

B3
i (t)Pi t ∈ [0, 1] (1)

Here, Pi are control points of Bézier curve, they constitute
control polygon of Bézier curve. Bi

3(t) are cubic Bernstein
basis function shown as follow:

B3
i (t) =

3!
i!(3− i)!

ti(1− t)3−i i = (0, . . . , 3) (2)

When the curve lies on the XY plane, curvature can be
expressed by equation (3):

κ(t) =
|C ′(t)× C ′′(t)|

(|C ′(t)|)3 (3)

Here, C ′(t) is first derivative of C(t). It shows the velocity
in physics and shows tangential direction in the geometry on
the point C(t). The first derivative of cubic Bézier curve can
be expressed by equation (4):

C ′(t) =3
2∑

i=0

B2
i (t)(Pi+1 − Pi)

=3(A0 + 2tD0 + t2E0)

(4)

C ′′(t) is the second derivative of C(t). It shows the acceler-
ation in physics and shows curved tendency in the geometry.
The second derivative of cubic Bézier curve can be expressed
by equation (5):

C ′′(t) =6((1− t)D0 + tD1)
=6(D0 + tE0)

(5)

In equation (4) and (5):

Ai =Pi+1 − Pi (i = 0, 1, 2)
Dj =Aj+1 − Aj (j = 0, 1)
Ek =Dk+1 − Dk (k = 0)

(6)

Here, Ai, Dj and Ek are called first-order, second-order and
third-order control vector of cubic Bézier curve, individually.
Fig.1 shows the case that P0 and P3 lying on the same side
of A1.

Form the equation (4) and (5), C ′(t) and C ′′(t) are
continuous and derivable in the parametric interval t ∈ [0, 1].
So C ′(t) × C ′′(t) shown in equation (3) is also continuous
and derivable in the defined interval.

According to the theory of CAGD, C(t) are inflection points
of curve when C ′(t) × C ′′(t) = 0. For vectors C ′(t) and



Fig. 1. The geometric meaning of Control point vector

C ′′(t), there are only two possibility can lead to their cross
product is 0:

• C ′(t) × C ′′(t) = 0 and C ′(t) 6= 0: then κ(t) = 0.
Vectors C ′(t−)×C ′′(t−) and C ′(t+)×C ′′(t+) should
have the opposite direction for C ′(t). So C(t) are called
non-singular inflection points.

• C ′(t)×C ′′(t) = 0 and C ′(t) = 0: then κ(t) =
0
0

, which
leads to the curvature of the point can not be calculated.
According to the continuity of C ′(t), C ′(t−) and C ′(t+)
should have the opposite direction for cubic Bézier curve.
In general, the points are called the singular points if they
satisfied C ′(t) = 0. So singular points are also special
inflection points.

In this paper, inflection points are called shape characteristic
points of curve that contain the non-singular inflection points
and singular points.

When use A0x, A0y, D0x, D0y, E0x, E0y represent respectively
the x and y components of vectors A0, D0 and E0, if:

o = A0xD0y − A0yD0x

p = D0xE0y − D0yE0x

q = A0xE0y − A0yE0x

(7)

Combined equations (4), (5) and (7), necessary and sufficient
conditions of inflection points exist can be obtain shown as
equation (8):

pt2 + qt+ o = 0 (t ∈ [0, 1]) (8)

The parameter t ∈ [0, 1] can be computed by equation(9):

t =
−q ±

√
q2 − 4po

2p
(t ∈ [0, 1]) (9)

Especially, When C ′(t) = 0, necessary and sufficient condi-
tions of singular points exist can be obtain shown as equation
(10):

t =
−D0x ±

√
D2

0x − A0xE0x

E0x

=
−D0y ±

√
D2

0y − A0yE0y

E0y

(10)

B. Control Polygon of Cubic Bézier Curve

According the relative position relationship of the four
control points for cubic Bézier curve, the control polygon will
be one of the following three forms:

1) Pi lying on the same line.
2) P0,P3 lying on both sides of A1.
3) P0P3 lying on the same side of A1.
In order to find the shape characteristic points of the curve,

all possibilities of the combination of curvature expression and
control polygon should be discussed in detail.

Form 1: In the interval t ∈ [0, 1], C ′(t) and C ′′(t) both
have two possibilities of zero and non-zero.

• When C ′(t) 6= 0: then C ′′(t) = 0 or C ′′(t) 6= 0.
Because C ′′(t) and C ′(t) lying on the same line, |C ′(t)×
C ′′(t)| = 0 is always tenable, that is κ(t) = 0 and each
point on the curve is non-singular inflection point.

• When C ′(t) = 0, the singular point exist. Its parameter
t can be obtained by equation (8).

Form 2: In the interval t ∈ [0, 1], if C ′(t) 6= 0 is always
tenable, then singular points are not exist (Theorem 1). If the
point which make C ′(t) × C ′′(t) = 0 exist (Theorem 2), it
must be non-singular inflection point of the curve. Now, we
prove the two theorems.

Theorem 1: If P0, P3 lying on both sides of A1, C ′(t) 6= 0
is always tenable.

Prove: From equation (4), we can obtain equation (11):

C ′(t) =3(
2∑

i=0

Bi
2(t)Pi+1 −

2∑
i=0

Bi
2(t)Pi) (11)

which means
2∑

i=0

Bi
2(t)Pi+1 and

2∑
i=0

Bi
2(t)Pi are two quadratic

Bézier curve defined by P1, P2, P3 and P0, P1, P2. According

the convex hull property,
2∑

i=0

Bi
2(t)Pi+1 and

2∑
i=0

Bi
2(t)Pi must

be lying on both sides of A1 (see Fig.2). From equation (11):
• When t = 0, C ′(0) = 3A0 6= 0.
• When t = 1, C ′(1) = 3A2 6= 0.
• For the arbitrary parameter t ∈ (0, 1), the start point and

the end point of the vector C ′(t) must be lying on both
sides of A1, so C ′(t) 6= 0 is tenable.

Theorem 1 is proved.
Theorem 2: If P0, P3 lying on both sides of A1, the point

which make C ′(t)× C ′′(t) = 0 (t ∈ [0, 1]) must exist.
Prove: From equation (4), (5) and (6):
• When t = 0, C ′(0)× C ′′(0) = A0 × A1.
• When t = 1, C ′(1)× C ′′(1) = A1 × A2.

When P0, P3 lying on both sides of A1, A0 ×A1 and A1 ×A2
defined two vectors with opposite direction. According to the
Mean Value Theorem, when C ′(t)×C ′′(t) is continuous and
derivable, the point which make C ′(t)×C ′′(t) = 0 (t ∈ [0, 1])
must exist. Theorem 2 is proved.

Form 3: In the interval t ∈ [0, 1], D0, D1 always point to
the same side of A1, and C ′′(t) also points to the same side



Fig. 2. when P0,P3 lying on the side of A1,geometric meaning of C ′(t)

of A1. So C ′′(t) 6= 0 is always tenable. However, the case
C ′(t) = 0(singular points) and C ′(t)//C ′′(t)(non-singular
inflection points) may exist.

For the above three forms of cubic Bézier curve, Form
1 are often not taken into account. There must be at least
one inflection point in Form 2. Singular points and non-
singular inflection points might exist in Form 3. For the shape
characteristic points of cubic Bézier curve, we can use the
uniformity algorithm described in the next section to obtain
them rapidly.

C. Algorithm for shape characteristic points of Bézier curve

When inflection points (including singular points and non-
singular inflection points) were regarded as the shape char-
acteristic points of cubic Bézier curve, according to above
discussed results, rapid extraction algorithm of shape char-
acteristic points can be obtained as follows:

Step 1 : According the shape of the control polygon to judge
whether it belongs to the Form 1. If it’s Form 1, turn
to Step 3, otherwise, turn to Step 2.

Step 2 : To implement Step 3 after calculating the param-
eters and coordinates of inflection points based on
equation (8) and (9).

Step 3 : To calculate the parameters and coordinates of
inflection points based on equation (10), classified
the inflection points into singular points and non-
singular inflection points, save their informations.

III. THE SHAPE CHARACTERISTIC POINTS OF CUBIC
B-SPLINE CURVE

Any non-rational cubic B-spline curve can be divided into
several segments of the non-rational cubic Bézier curves. So
extraction algorithm of shape characteristic points of non-
rational cubic B-spline curve can be obtained by dividing it
into some cubic Bézier curves.

A. The Segmentation of Cubic B-spline curve

Similar to the Bézier curve, cubic B-spline curve is defined
as follows:

C(t) =
n∑

i=0

N3
i (t)Pi t ∈ [0, 1] (12)

where, Pi are n + 1 control points of B-spline curve, they
constitute control polygon of B-spline curve. If the knot vector
is [x0, . . . , xn+k+1], the k power B-spline basis functionNk

i (t)
is defined as the equation (13)

N0
i (t) = 1 (xi ≤ t < xi+1)

Nk
i (t) =

t− xi

xi+k−1 − xi
Nk−1

i +
xi+k − t

xi+k − xi+1
Nk−1

i+1

(13)

For a definited parameter t, when xm ≤ t < xm+1,
in the cubic B-spline basis functions,only the value of
N3

m−3, N
3
m−2, N

3
m−1, N

3
m is non-zero,and the remaining en-

tries are zero. If:

α =xm+1 − t

β =t− xm

γ =xm+2 − t

δ =t− xm−1

ε =xm+3 − t

η =t− xm−2

λ =xm+1 − xm

ξ =xm+1 − xm−1

σ =xm+1 − xm−2

ϕ =xm+2 − xm

ψ =xm+2 − xm−1

ω =xm+3 − xm

θ =xm+3 − xm+1

ϑ =xm+2 − xm+1

ν =xm − xm−1

$ =xm − xm−2

(14)

so the N3
m−3, N

3
m−2, N

3
m−1, N

3
m can be changed into the

equation (15)

N3
m−3 =

α3

σξλ

N3
m−2 =

ηα2

σξλ
+
δαγ

ψξλ
+
γ2β

ψϕλ

N3
m−1 =

δ2α

ψξλ
+
δγβ

ψϕλ
+

εβ2

ωϕλ

N3
m =

β3

ωϕλ

(15)

that is means: when xm ≤ t < xm+1, a cubic B-spline curve
can be simplified as following form:

C(t) =
m∑

i=m−3

N3
i (t)Pi t ∈ [xm, xm+1) (16)

If µ =
β

λ
(µ ∈ [0, 1]), (1−µ) =

α

λ
, the cubic B-spline curve

can be described into cubic Bézier curve:
m∑

i=m−3

N3
i (t)Pi =

3∑
j=0

B3
j (µ)Qj (17)



By solving the equation(17), we can get:

Q0 =
λ2

σξ
Pm-3 + (

νϕ

ψξ
+
$λ

σξ
)Pm-2 +

ν2

ψξ
Pm-1

Q1 =(
ϕ

3ψ
+

2λ
3ξ

+
2ϑν
3ξψ

)Pm-2 +
ν

ψ
Pm-1

Q2 =(
ξ

3ψ
+

2λ
3ϕ

+
2ϑν
3ϕψ

)Pm-1 +
ϑ

ψ
Pm-2

Q3 =
ϑ2

ϕψ
Pm-2 + (

ξϑ

ϕψ
+
λθ

ϕω
)Pm-1 +

λ2

ϕω
Pm

(18)

From the above derivation, there are n+1 control points of
non-rational cubic B-spline curve can be divided into n − 2
sections of non-rational cubic Bézier curves. Control points
of each section of cubic Bézier curve can be obtained by
calculating its corresponding four control points of cubic B-
spline and their associated knot vector. So the problem about
shape characteristic points of cubic B-spline curve can be
reduced to shape characteristic points of some cubic Bézier
curves.

B. Algorithm of shape characteristic points of B-spline curve

The shape of cubic B-spline curve always be influenced by
knot vectors, which is more complex than cubic Bézier curve.
When continuous d(d ≥ 2) knot vectors have the same values,
the two sections of Bézier curve which are divided at piont
C (t) might exist C ′(t) is not continuous. Combined with the
concept of G-continuation, if C ′(t−) and C ′(t+) are not in a
straight line, curve at this point is G0 continuation. C (t) are
called cusp point. If considering cusp points, singular points
and non-singular inflection points as the shape characteristic
points of cubic B-spline curve, extraction algorithm of shape
characteristic points of cubic B-spline curve can be obtained
by modified slightly algorithm of cubic Bézier curve:

step 1 : Divide the cubic B-spline curve into some B ’ezier
curves according to the equation (18).

step 2 : For each cubic Bézier curve, implement its extrac-
tion algorithm of shape characteristic points.

step 3 : Calculating κj(1),κj+1(0) and Cj
′(1), Cj+1

′(0) of
any two adjacent cubic Bézier curves. If Cj

′(1) = 0
and Cj+1

′(0) = 0, the point is a singular point; Oth-
erwise if κj(1) and κj+1(0) have opposite sign and
non-zero, the point is a inflection point; Otherwise if
Cj

′(1) and Cj+1
′(0) are not in a straight line,the

point is a cusp point.
step 4 : Sort and merge all shape characteristic points of

cubic Bézier curves, the set is shape characteristic
points of the cubic B-spline curve.

IV. EXPERIMENTAL RESULTS

From Fig.3 to Fig.5 shows some kinds of shapes characteris-
tic points of cubic Bézier curve included the Form 2 and Form
3. Where the small solid rectangle represents non-singular
inflection points and the large hollow rectangular represents
singular points.

Fig.3 shown a case that P0, P3 lying both sides of A1. In this
case, there must be at least one inflection point. Fig.4 shown

Fig. 3. P0P3 lying both sides of A1

Fig. 4. P0P3 lying the same side of A1 and A0 did not cross with A2

Fig. 5. P0P3 lying the same side of A1 and A0 crossed with A2

a case that P0, P3 lying on the same side of A1 and A0 did
not cross with A2. In this cases, there are two non-singular
inflection points. Fig.5 shown a case that P0, P3 lying on the
same side of A1 and A0 crossed with A2. In this case, there
are two non-singular inflection points and one singular point.

From Fig.6 to Fig.9 shows some kinds of shapes charac-
teristic points of cubic B-spline curve. Where light solid dots
represents control points of cubic B-spline curve, light lines
connected constitute control polygon of B-spline curve. Dark



TABLE I
SHOWS KNOT VECTORS AND THE NUMBER OF SECTIONS OF CUBIC BÉZIER CURVES FROM FIG.6 TO FIG.9

Basis information Knot Vector The number of Bézier curve
Fig.6 {-0.32, -0.25, -0.13, 0.0, 0.2, 0.5, 0.5, 0.8, 1.0, 1.1, 1.22, 1.37} 4
Fig.7 {-0.42, -0.35, -0.23, 0.0, 0.2, 0.5, 0.5, 0.8, 1.0, 1.1, 1.8, 1.87} 4
Fig.8 {0.0, 0.0, 0.0, 0.0, 0.333333, 0.666666, 1.0, 1.0, 1.0, 1.0} 3
Fig.9 {-0.42, -0.35, -0.23, 0.0, 0.5, 0.5, 0.5, 1.0, 1.8, 1.87, 1.95} 2

TABLE II
SHOWS DETAILED INFORMATION FROM FIG.6 TO FIG.9

detailed information Fig3 Fig4 Fig5 Fig6
P0 The coordinate values ( 26, 695) ( 31, 322) ( 412, 39) ( 798, 284)
P1 The coordinate values ( 280, 15) ( 88, 48) ( 113, 19) ( 31, 28)
P2 The coordinate values ( 558, 645) ( 359, 48) ( 462, 19) ( 345, 28)
P3 The coordinate values ( 716, 69) ( 80, 663) ( 23, 694) ( 25, 688)
P4 The coordinate values ( 878, 510) (1126, 663) (1262, 32) (1318, 436)
P5 The coordinate values ( 982, 91) ( 953, 56) (1262, 636) ( 899, 650)
P6 The coordinate values (1168, 424) (1200, 56) ( 899, 29)
P7 The coordinate values (1260, 307) (1253, 326)

t0 = 0.664206(1) t0 = 0.163671(2) t0 = 0.101609(1) t0 = 0.112691(1)
The parameters value of characteristic points t1 = 0.428941(2) t1 = 1.000000(2) t1 = 0.612460(1) t1 = 0.550701(1)

t2 = 1.000000(2) t2 = 0.000000(3) t2 = 0.296948(2) t2 = 1.000000(1)
t3 = 0.000000(3) t3 = 0.825578(3) t3 = 0.170846(3) t3 = 0.000000(2)
t4 = 0.644267(3) t4 = 0.540463(2)
t5 = 0.509683(4) t5 = 0.700002(2)

t6 = 0.700002(2)
t7 = 0.798740(2)

t1t2 are singular points t2t3 are cusp points
The classified of characteristic points t5 is a singular point

t7 is a singular point
t0( 420, 304) t0( 237, 232) t0( 335, 33) t0( 304, 100)

The coordinate values of characteristic points t1( 643, 287) t1( 653, 663) t1( 250, 46) t1: ( 222, 148)
t2( 797, 289) t2( 653, 663) t2( 285, 251) t2( 25, 688)
t3( 797, 289) t3(1077, 245) t3( 554, 370) t3( 25, 688)
t4( 939, 321) t4(1086, 499)
t5(1106, 314) t5(1122, 493)

t6(1111, 492)
t7(1070, 484)

dots represents control points of cubic Bézier curves gener-
ated by divided cubic B-spline curve, dark lines connected
constitute control polygon of Bézier curves. The small solid
rectangle represents non-singular inflection points of cubic B-
spline curve, the big solid rectangle represents singular points,
+ represents cusp points.

Fig. 6. A non-uniform cubic B-spline curve contains only non-singular
inflection points

TABLE I shows the knot vectors and number of divided

Fig. 7. A cubic B-spline curve contains non-singular inflection points and
singular points

cubic Bézier curves corresponding to Fig.6 - Fig.9. TABLE
II shows the control points coordinates values of curves from
Fig.6 to Fig.9, the classified of shape characteristic points, the
corresponding parameter values and coordinates values. The
upper-left corner is the coordinate origin point, rightward is the
X-axis’ positive direction, downward is the Y -axis’ positive
direction. Where shape characteristic points are non-singular



Fig. 8. A uniform cubic B-spline curve with multiple knot vectors

Fig. 9. A B-spline curve contains non-singular infection points,cusp points
and singular points

inflection points without special statement. The parameters
value of cubic Bézier curves retain only six digits after the
decimal point, numbers in brackets indicates shows that the
parameters belong to which Bézier curves. The coordinates
values of the shape characteristic points are approximative
by substituted the corresponding parameters into the curve
equation and taken the integer values of them.

V. CONCLUSION

The formula for calculating the inflection points which
represent the shape characteristic of planar cubic Bézier curve
were given based on the analysis of curvature expression.
Combined the shape characteristic of the control polygons and
classified inflection points, we proposed a algorithm which
can quickly and correctly obtain shape characteristic points
of cubic Bézier curve and B-spline curve. The experimental
results verify the correctness of the formula and excellent
robustness of the algorithm.
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