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Abstract Three-dimensional point cloud registration is important in reverse engineering.
In this paper, we propose a registration method for large-scale 3D point clouds, which is
based on neighborhood constraints of geometrical features. The method consists of initial
and exact registration steps.In the process of initial registration, we define a new functon
that measures feature similarity by calculating the distance function, and in the process of
exact registration, we introduce the angle information that improve the accuracy of iterative
closest point algorithm. Compared with the traditional feature-based and iterative closest
point algorithms, our method significantly reduced the registration time by 11.9 % and has
only 1 % of the registration error of the traditional feature-based algorithm. The proposed
algorithm can be used to create efficient 3D models for virtual plant reconstruction and
computer-aided design, and the registration results can provide a reference for virtual plant
reconstruction and growth.

Keywords Point cloud registrations - Weighted sampling - Geometrical feature - Features
similar degree - Iterative closest point (ICP)

1 Introduction

Developments in computer-aided design and reverse engineering mean that point cloud data

registration has become an important research topic. Point cloud registration generally con-
sists of an initial registration and an exact registration. The initial registration process is
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affected by many factors. The classic iterative closest point algorithm [2, 3] and its variants
are generally used for the exact registration process. Feature-based registration methods
have recently become popular, because they do not require an exhaustive search of all points
to find the correspondence. The main idea behind feature-based registration is to search for
effective matching feature points. Two approaches have been applied to reduce the num-
ber of feature points: sampling the data point set, and using feature extraction techniques
[1, 27]. In terms of feature implementations, existing feature registration methods can be
mainly split into two categories: (1) features derived via artificial targets; and (2) features
derived by automatically extracting geometrical primitives.

Luo [18], Wu [25], and Chen [4] proposed the tag method, which manually labels
feature information during the measurement process. The registration operation uses this
information, because the labels may be the most reliable information. However, properly
placing and identifying artificial targets can be costly and laborious. Zhang [30] proposed
the center superposition method, and Dai [16] used the main direction of the joint for
the initial registration. Diez [8] used layered normal space sampling to capture the corre-
sponding points and implement the initial registration. Jiang [15] used the angle between
any point and its neighbor as geometric feature information, and proposed an angle-
based feature registration algorithm. However, the estimate of the normal vector may be
affected by noise. Oztireli [7] implemented a point-to-point distance constraint between
matching point pairs of two point clouds, but the effect of this constraint for excluding
the error matching point depends on a threshold value. Other registration methods are
required to identity and extract conjugate features such as key points [24], liner segments
and curves [9], and planar patches [14]. However, these methods depend on the distinc-
tive features of a point cloud and are sensitive to noise and outliers. Dai [6], Liao [17],
and Mian [19] proposed the local feature-based method. In conclusion, existing initial
registration methods mainly use geometric feature-based registration. That is, they (1) cal-
culate the geometric feature of a two test point set, (2) compare the feature point pair,
and (3) select the valid feature points and calculate the rigid body transformation based
on the geometric features of corresponding point pairs. This process completes the initial
registration.

Iterative closest point (ICP) uses these feature primitives to further register a point cloud.
It is time-consuming, has restrictive requirements for the initial positions of the point cloud
data, and can easily fall into local optimums [23, 26]. Many researchers have attempted to
improve the ICP algorithm. Rusinkiewicz [20] summarized variants of the ICP algorithm
and divided it into six stages. They compared the various improved algorithms for each
stage, and proposed a new method with improved convergence. Chen and Mediom [3] used
a tangent plane fit to the point clouds, but their algorithm was slow. The method will not
converge if there are significant changes to the surface curvature of the model. Zhu [32] pro-
posed a two-way distance field to implement the pre-registration of the model, and further
used the ICP to achieve an accurate alignment of the model. Du [11] proposed an affine ICP
algorithm, and Yang [28] proposed Go-ICP. ICP and its variants require good approxima-
tions of the point clouds, because they are iterative descent algorithms. Finding the closest
point is time-consuming, so we must obtain high quality features if we wish to improve the
method.

Microsoft Kinects have been used as 3D scanners for obtaining 3D point clouds. A regis-
tration method for a Kinect used in an indoor environment has been proposed [21]. However,
Kinects does not work normally in an outdoor environment with natural light. It is very dif-
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ficult to extract feature points from point clouds captured by a Kinect. To satisfy the needs
of our project, we researched and developed an independent 3D scanner [31] that functions
correctly in an outdoor environment. Our proposed registration method efficiently supports
this 3D Scanner.

This paper represents two contributions to point cloud registration. First, we define a
new function that measures feature similarity and improves the initial registration method.
The initial point sets are sampled multiple times. Then, the initial corresponding point-
pairs are determined using the feature similarities calculated using the distance function,
which is defined in quintuple space. We show that our feature similarity function works
well with the proposed method. Second, we introduce the angle of the vector between the
matching point and the center of the global coordinate system and the normal vector of the
matched point-pairs, which is used in exact registration process to improve the accuracy of
the algorithm.

2 ICP algorithm registration theory

The classical ICP algorithm solves the following least squares mean square error prob-
lem. Given two sets of 3D point cloud models, P = {p;,i =1,2,3,---,N,} and Q =
{qj, j=12,3,---,N,g }, let p; and g; denote the position vectors of points in 3D space,
and N, andN, denote the number of reference and target models, respectively. The goal is
to estimate a rigid motion with a rotation transformation in 3D space, and translation trans-
formation in 3D space. Let E (R, t) denote a rigid transformation. Then, the mean square
objective function that we wish to minimize is

N
[

FERD) = N—PZHRp,- —ql +111%. e
i=0
2.1 Calculating the rigid transformation

1. Calculate the centers of mass of the reference and target models, and estimate their
cross-covariance

1 Np ) No
MP:przpivﬂQszg; qj, )
i=1 =1
Ly T 1Y T T
D= o iZI[(Pi —up) X (@i — o) 1= N—P;[piq, 1= wpuhy. 3
2. The anti-symmetric matrix Mat;; = (ZP,Q _ Z}TD’Q) is used to form the column

vector A = [Matys Matz; Mat2]F, and is constructed using (3). Then, we can
construct the symmetric matrix Sym(}_ p Q),

Y po AT
S = ' . 4
mQ, ) [ A S0+ 3t 0=t Tho ,3} )
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Here, I3 is the 3 x 3 identity matrix. The unit eigenvector VecE =[rg r1 r r3]¥
that corresponds to the maximum eigenvalue of matrix Sym(}_ p o) s selected as the
unit quaternion for calculating the optimal rotation, R. The optimal translation vector is

t=pup—R(VecE)ug. ®)

3. Finally, the registration vector 7 and the mean square point matching error e,,; can be
obtained using

—
(T, ems) = P(P, Q), (6)
where ® represents the least squares quaternion operation.

The ICP algorithm can be summarized as: (1) compute the closest point from point sets
P and Q; (2) compute the transformation vector 7' and matching error e, ; (3) apply the
registration vector ( 7') to the target point set obtained from the new target model, Pyt =

- .
T (Py); and (4) repeatedly compute the closest points between the reference and new target
model, and the transformation vector, until obtaining the complete model shape.

3 Feature extraction
3.1 Estimating neighborhood features

We use two steps to extract the geometric features of the point cloud data in 3D space before
registration. First, we select a point set that is stable and distinctive. Second, we determine
the neighborhood of a point, and extract its geometric features based on the neighborhood.
The curvature and normal vector represent the geometric features of the local area of the
point cloud data. The curvature with translation, rotation, and scale invariance [1] represents
changes to the shape of the local area of the measurement point. Meanwhile, for point
cloud data captured under a different coordinate system, the relative position and topological
relationships between feature points stay the same. Therefore, the topological invariance of
the feature space can be used to find the matching point pair.

The adjacency features of a point cloud consist of the number of neighboring points,
the centers of neighboring points, the point-to-center distances, the normal vectors, and the
curvatures. The first three features are easy to determine, so we must mainly develop a way
to effectively calculate the last two features. For scattered point cloud data, the least squares
fitting method is used to derive the normal vector and curvature, which is a fast and robust
method. In this paper, we used the least squares fitting plane to calculate the normal vector
[7, 12]. To adapt to the local shapes of different surfaces, we used the least squares fitting
surface S(x, y) to compute the curvature using the approach described in [5, 29]. We then
calculated the first and second fundamental magnitudes using Ly = Syyn, Ny = Syyn,
My = Syyn, E; = 5,8y, Fy = 5§y, and Gy = §,Sy, substituted into Equations (810).
Sx, Sy, Sxx, Syy, and Sy, are the partial derivatives of surface S(x, y). The quadric surface
represents the local area, and (7)-(10) are used to calculate the principal curvatures (k1, k2),
the mean curvature (H), and the Gaussian curvature (K ). That is,

ki ky = H+VH? - K, )
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_ EsNg —2F;M; + G L

. 8
2(EsGs — F2) ®
k=Ll = ; 9)
B ESGS - sz’
and S S
n= XX (10)
[Sx x Sy|

The direction of the surface normal vector calculated using this method is not generally
consistent. The inconsistency of the normal vector directly affects the accuracy of the cur-
vature estimate, and the normal importantly helps to exclude errors in the matching point
pairs. Therefore, we must improve the inconsistency of the normal. In this paper, we use the
normal vector spread idea proposed by Hoppe [13] to solve this inconsistency.

3.2 Quintuple feature space

Let pf = {p;f | plf eER}i=1,2,-,s:s5< N] be the target feature point set, and

let 9f = {q]f | q]f ER,j=12-,5s:5< N} be the reference feature point set. For
each point in the set pl p;f e p/, we search all points that have similar curvature to P f
in the point set Q7 that is, the points with principal curvatures that satisfy

ki) = k@2 + tka(p!) — katg)P? < 1,
k1 (p]) = ki (gD % [ka(p)) = katg D]l < e,

where €1 and &; represent two adjustable parameters. As calculated above, the correspond-
ing features for a point in the reference and target point clouds can be expressed as quintuple
feature vectors

an

[pi aj] (12)
and
[K H © k kIl (13)
In (12), p; and g; represent the corresponding point pair from P and Q. In (13),
K H ki kp can be obtained using (7)-(9), where @ is the normal vector angle. The
rotation and translation transformations in 3D space may change the position of the item in
(11), but the item in (12) remains the same.

3.3 Definition of the measurement function

In this paper, we use a distance function to measure the similarity of a matching point
pair. Let X = (xy, x2, -+, x5) denote the feature vector of a matching point. Here, x; is
the Gaussian curvature mean, x; is the average curvature, x3andx4 represent two principle
curvatures, and xs is the mean of the normal vector angles. We use X;and X, to represent

if and its corresponding point qu .

The similarity between pif and qu is defined as

the features of the registration point p

1
D(p! . q!) + 1076

Si(pl gl =1+ (14)
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(a) (b)

Fig. 1 Here, p is a point in the neighborhood, ¢ is the center of the neighborhood, and n is the normal of
p.a(p —q) -n < 0indicates convex points; and (b)(p — ¢g) - n > 0 indicates concave points

where D(p{ . ¢7) = II1X; — X:|I.

We calculate the similarity of the registration points and any corresponding point. If
the maximal similarity satisfies maxS;; (pif, qu) <1(z =1,2,---,1), then we consider
that they are not valid matching point pairs. Otherwise, we accept them as matching point
pairs. The remaining points are investigated in the same manner, that is, we calculate the
similarity of every matching point in the corresponding point set. There may be multiple
valid registration points, so we choose the most similar point.

4 Registration method

The registration method based on constraints of neighboring geometric features consists of
initial and exact registration steps. The initial registration step effectively adjusts to the ori-
entation of the point cloud, and captures more accurate matching point pairs. This provides
a better foundation for the exact registration. In the exact registration process, we add two
new geometric feature constraints. In this way, we can simplify the matching point pair and
remove incorrect matching point pairs. This accelerates the convergence and improves the
registration accuracy.

4.1 Initial registration

The conventional way of extracting a matching point pair is to search all points in the target
and reference sets. However, this method has some problems: 1) not all points are suitable
for matching; and 2) the method is time-consuming with a time complexity of O(N,Nyp),
whereN,, is the size of point cloud P and Ny is the size of point cloud {Q}. To improve the
matching efficiency, we must select a portion of appropriate matching points from the point
cloud.

Weighted sampling For an irregular surface, a raised area is more useful for feature
extraction. In this paper, we define the concave and convex points as shown in Fig. 1. We
remove concave points because they affect the registration accuracy.
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To ensure the integrity of the search space used to determine matching feature points
for the reference point set, we only sample the target point set. That is, N = dN, where 0

indicates weighting factors, N is the size of the target point cloud P, 0 = 8——, and sum

is the number of points that have a larger than average Gaussian curvature. 8(0 < 8 < 1)
is an adjustable parameter, defined as

g = 0<pB <05, if sum>50%,
T105<B8<1,if sum <350%.

After weighting the sample of the target point set, the time complexity for calculating
the matching points reduces from O (NpNg) to O(BNpNg).

In the initial registration process, we adapt the function defined in Section 3.3 to establish
matching point pairs. The improved initial registration algorithm is described in Algorithm
1.

Algorithm 1: Improved 3D point cloud initial registration algorithm
Input: P = {pi € Rg} Q= {qj € RS}
1 for p € {p;} do
Nk neighborhood = KNeighborhood(p), Ceenter = CenterofNeighbor(Ng)
foreach Nkneighbo'rhood do
3 L Fit the surface Sy, and calculate ki, k2, K, H, n.

—
4 Calculate the average value of Gaussian curvature: K, = % Zf:l K, Sample:
J

. . =
removing concave points and K x < Kp.
i

5 foreach p** do
6 | (pi*.q;)=searchP2Q(p;*,Q)
7 Establish the correspondence of feature points according to the feature
similarity.
8 Compute transformation matrices R and ¢ using matched points.
9 Apply transformations R and ¢ to the 3D point cloud.
10 return Initial completed

Output: afterIni = {p; |p; €R%i=1,2,- - ,N/}
afterIniQ = {q; | q;- €R%j=1,2,--- ,M/}

4.2 Exact registration

The ICP algorithm is the most widely used exact registration algorithm. It searches for
nearest point pairs in two data point sets. Then, the rotation and translation transformations
are applied to register of the nearest point pair. The transformations are applied iteratively
until the matching criterion is met.

Two groups of points in a unified coordinate system are obtained after the initial regis-
tration, as shown in Fig. 2. Meanwhile, we calculate the relationships between the matched
points in the local area. During the exact registration process, the initial registration results
are used to determine the angles (¢) of the vectors between the adjacent matching point
pairs ( pl/. and q}) and the origin of coordinate system after the initial registration. The angles
(®) of the normal vectors of the two matching points are also calculated. In this paper, we
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Fig. 2 Two geometric features after the initial registration

include these two features (varphi and ®) in the ICP iteration process. To further improve
the efficiency of the ICP, we optimize the matching process by considering two geometric
features. This method is called the improved ICP algorithm, and is given in Algorithm 2.
In Fig. 2, p; and g; represent two nearest neighbor matching points, o is the original
coordinate system after initial registration, and n; and n; represent the normals of p; and
q,, respectively. We calculate the angle using the cosine law. Let varphi represent the
angle between op; and (ﬁ;., and let ® represent the angle between the normal vectors n;
and n;. Here, V¢ controls the number of valid matching points, and the container Cy is
used to save the optimal matching point pair. If the angle between two points satisfies 1)
sing < 11&&sinf < 13, and 2) | cos ¢ — cosf| < 13, then the matching point pair is added

to Cy.

We represent the point set after the initial registration step as follows. Let after Ini P =
{pi1p e R3i=1,2,--- ,N'} denote the target point set, and let afteriniQ =
{q} | q;. € R3;j =1,2,--- ,M/] denote the reference point set. The feature point pair

after the initial registration step is regarded as the initial value for the exact registration set.

(a) (b) (c)

Fig. 3 Point clouds from two different views and the correspondence registration
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LetafterIni Pt = {plf | pif eER0<i< N’} denote the target point feature point set,

and let after Qf = {qu | q]f eER0<j < M’} denote the reference feature point set.
The improved exact ICP algorithm is described in Algorithm 2.

Algorithm 2: Improved exact registration ICP algorithm

Input: afteriniP = {p; |p; €ERi=1,2,--- ,Nl}
afterIniPf = {pf e R3;0<i< N/}
afterIni@Q = {q; €R%j=1,2,--- ,M/}
afterIniQf = {q]f | qf ER}0<j< M/}
V; =[3,9,12,16,50,100,180]  Cj = ¢

1 for v; € Vy do

2 while (ex, — ex+1) <y do

3 for p € afterInip do

4 L (pf, qlf = seach]\]earest(p{7 afterIniPf))

5 Calculate the angle using the cosine law, the geometric features of
vector opi ,071; , the angle ¢ between (ﬁ and 071§ , and the normal vector
angle 6.

6 if (sinp < 71) &€ (sinf < 12) €969 (| cos p — cosb| < taus) then

7 if Cf—num, < Vfl then

s | C4V = Add(p],af)

9 if afterIniP? and afterIniQ?, the registration error is too large then

10 Use the quaternion method to calculate transformation matrices R

and T that Al;ninimize the mean square error defined as
T2
dr, = NLpZizpl quf —Rpf Q%

11 calculate transformation (?, ems) = P(P,Q),
12 and apply the transformation

| afterniQ’(1+1) = Tran(?)after[m’@f(l)
13 Apply the transformation to the target point cloud
14 return Registration completed

Output: Point cloud data registration

5 Experiments

In these experiments, we applied our method to three 3D point clouds: 1) the standard
3D point cloud data of a bunny captured by the computer graphics laboratory of Stanford
University [22]; and 2) noisy point clouds of the terracotta warrior model and maple leaf
that were captured by our equipment [31]. The experiments were implemented on an Intel
(R) core (TM) 2.6 HSF CPU with 4GB RAM. Figure 3 shows the point cloud data for two
different views, Fig. 3a has 49,250 points and Fig. 3b has clouds with 90,678 and 104,748
points. Figure 3c demonstrates that the corresponding points of the two views generally refer
to the same part of the bunny, which verifies the effectiveness of our algorithm. Throughout
these experiments, 1 = 0.1, o = 0.2, andtz = 0.005.
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Fig. 4 Registration results using different algorithms

5.1 Comparison of different registration algorithms

The purpose of the first experiment was to verify the global optimality of our new algo-
rithm. We compared four algorithms: 1) traditional initial registration [29]; 2) classical ICP
registration [1]; 3) initial registration combined with classical ICP [28]; and 4) improved ini-
tial registration combined with improved ICP. We considered how our algorithm performed
with the same inputs. The registration results are shown in Fig. 4.

Table 1 contains the least squares errors and time taken to execute the 3D point cloud
data registration process. The different algorithms were implemented on a 2.6HZ Intel(R)
core with 4.00 GB RAM. In all the comparisons, the models started in arbitrary positions.
We reported the average run times over X runs of the algorithm. Figure 4b and Table 1 show
that, without an optimal initial registration, the classical ICP registration is not accurate
or efficient. Figure 4d and Table 1 demonstrate that our algorithm is more efficient and
accurate. The key point set was extracted before registration, and we weighted and sampled
the set to reduce the number of registration points, so there were more computations but
the algorithm ran much quicker. Furthermore, this method was more accurate, as shown in
Table 1.

5.2 Noise and outliers

This experiment tested the performance of our algorithm in the presence of noise and out-
liers. The ICP algorithm is based on a least-squares fit, so it is sensitive to noise and outliers.
In this experiment, we used the Stanford standard bunny scan data and the terracotta war-
rior model shown in Fig. 3, which contain noise. We tested the running time and matching
errors of our algorithm.

Following the algorithm in Section 4, we set Vy using different feature points. We
let Vi = [3,9,12, 16,50, 100, 180] denote the set of different feature points, and then

Table 1 Performance comparison for different algorithms

Algorithm Matching error (d/mm) Run time(s)
Traditional initial registration 7.01324 89.43
Classical ICP algorithm 3.40153 258.57
Initial registration + classical ICP 1.20365 42.14
Proposed algorithm 0.01248 38.46
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(e)V =50 (f) v =100 (g)v =180 (h) feature — free

Fig. 5 Comparison of the results for different numbers of corresponding points

used the corresponding matching points to calculate the transformation. We applied this
transformation to the registration process.

We registered the point clouds of the bunny and terracotta warrior that had the same
points as those obtained by the same sampling method under various conditions. Table 2
shows the robustness of the registration algorithm to the number of feature points. Accord-
ing to Table 2, three matches were sufficient to calculate the optimal transformation. An
increase in the number of point pairs corresponded to a small reduction in the matching
error, but an increase in time. Figure 5 shows the registration results using the standard point
clouds. Figure 5a shows the initial orientation of the point cloud and Fig. 5b shows the ori-
entation after registration using 3 matching point pairs. Although the point cloud data was
registered, there were errors and the point clouds did not completely overlap. Figures Sc—g
are the results obtained using 9, 12, 50, 100, and 180 matching point pairs. Figure 5 is the
registration result that did not use extracted feature points. We can compare these results to
evaluate the performance of the algorithm. Table 3 shows the performance of the registration
algorithm in the presence of noise, which we can compare with the results in Table 2. The
increase in corresponding point pairs improved the robustness of the algorithm. However,
the point pair selection was affected by the noise. Figure 6 shows the registration results in
the presence of noise. Comparing Fig. 6b and Fig. 5b, we can see some obvious registration

Table 2 Performance comparison when registering the bunny data using different numbers of corresponding
points. The best results are highlighted

Number of matching point pairs Matching error (d/mm) Runtime (s)

3 0.01347 36.23
0.01248 38.46

12 0.01242 40.01

16 0.01143 42.56

50 0.01041 67.31

100 0.00913 70.18

180 0.00911 90.54
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Table 3 Performance comparison when registering point clouds of the terracotta warrior data, which contain
noise. The best results are highlighted

Number of matching point pairs Matching error (d/mm) Run time (s)

3 0.05448 40.31
0.05132 46.23

12 0.05042 49.05

16 0.04943 53.41

50 0.04041 83.21

100 0.04013 91.23

180 0.04001 113.53

errors. Figures 6¢, d were obtained using 9 and 12 matching point pairs. Compared with
Fig. 5c, d, we can see that an increase in point pairs reduced the error, although it was still
present. Figures 6e—g are not obviously different to Figs. 6¢, d. Thus, increasing the number
of feature point pairs improved the algorithms resistance to noise, and the registration error
gradually leveled off.

Selecting V¢ The criteria for choosing Vy were determined using multiple experiments,
because we could not derive all the parameters mathematically. Our experimental results
show how the performance of our algorithm varies with Z, which represents a gradual trade-
off between performance and robustness. Z should be set based on the scene. Figure 7 lists
the various performance characteristics of the algorithm. For comparison, we used point

(6) V =50 (f) V =100 (g) V =180 (h) feature — free

Fig. 6 Results for different numbers of corresponding points, using noisy point clouds
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Fig. 7 Performance of our algorithm for different noise levels, and for different numbers of feature points

(a) Initial position

(f) v =100

Fig. 8 Maple leaf registration using the proposed method

(a) Initial Position

(b)v =12

Fig. 9 Registration of tree point cloud data

(C) Initial position (d) V=9
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(a) Initial scene (b) Initial position (C) Registration result

Fig. 10 Registration of plant data

clouds with and without noise, and different numbers of matching point pairs. An increase
in the number of matching point pairs slowed down the feature extraction process, and the
convergence speed was affected by noise. However, the matching error gradually decreased
and then stabilized.

5.3 Application

Registering the maple leaf data First, we registered the leaf point clouds acquired using
our equipment in an outdoor environment [31]. There were 49251 points. We then applied
the same method as in Section 5.2. Figure 8 shows that our algorithm produced a near perfect
registration, even for noisy point clouds and few feature points. For large, dense datasets,
a small fraction of uniformly sampled points are sufficient to compute the registration; the
full dataset is only used for the transformation. Our approach is robust to uniform sampling,
and residual matching point pairs are easily removed after a few ICP iterations.

Registering the tree model data We applied our method to two point-clouds of a tree
model, one acquired using our equipment in an outdoor environment (Figs. 9a, b), and one
provided by the University of Queensland (Figs. 9c, d). In this experiment, we set V; = 12
and Vy =9.

Registering broad leaved plant data Finally, we directly registered broad leaved plant
point cloud data that contained 116397 points, which were obtained by our scanner in an
outdoor environment. The data were captured in an uncontrolled environment, so they con-
tained some noise and outliers. In this experiment, we set Vy = 50. The algorithm took
approximately 92.51 s. The registration results are shown in Fig. 10.

6 Conclusions

We proposed a new point clouds registration method for large-scale, 3D point clouds, which
is based on a geometrical feature neighborhood constraint. The key point set is selected
to reduce the search space. We use the similarities of features to optimize the matching
point pairs, and angle features to remove incorrect registrations during the exact registration
process.

Our experiments demonstrate that the proposed method is an order of magnitude faster
than existing registration techniques, and produces a more accurate registration. Although
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noise has some effect, it did not affect the final performance of the algorithm. Our method
is robust to noise because it uses a geometrical feature neighborhood constraint.

We effectively integrated the proposed method with our scanner, which works in an out-
door environment. Our technique can also be used when it is difficult to extract feature
points. In the future, we will investigate methods for computing adaptive thresholds, and
provide a reference for virtual plant reconstruction.
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